On graph decompositions modulo k
نویسنده
چکیده
We prove that, for every integer k ≥ 2, every graph has an edge-partition into 5k log k sets, each of which is the edge-set of a graph with all degrees congruent to 1 mod k. This answers a question of Pyber. Pyber [8] proved that every graph G has an edge-partition into four sets, each of which is the edge set of a graph with all degrees odd; if every component of G has even order then three sets will do. This is best possible, as can be seen by considering K5 with two independent edges removed, which cannot be partitioned into fewer than four subgraphs with all degrees odd; and K4 with one edge removed, which requires three. Motivated by this result, Pyber [8] asked what happens when we consider residues mod k, rather than mod 2. In particular he asked whether for every integer k there is an integer c(k) such that every graph has an edge-partition into at most c(k) sets, each of which is the edge-set of a
منابع مشابه
Theorem (in any field of Characteristic 2):
In Graph Theory a number of results were devoted to studying the computational complexity of the number modulo 2 of a graph’s edge set decompositions of various kinds, first of all including its Hamiltonian decompositions, as well as the number modulo 2 of, say, Hamiltonian cycles/paths etc. While the problems of finding a Hamiltonian decomposition and Hamiltonian cycle are NP-complete, countin...
متن کاملLINKED TREE-DECOMPOSITIONS OF INFINITE REPRESENTED MATROIDS By
It is natural to try to extend the results of Robertson and Seymour’s Graph Minors Project to other objects. As linked tree-decompositions (ltds) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids. Kříž and Thomas pro...
متن کامل$Z_k$-Magic Labeling of Some Families of Graphs
For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic} if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$ defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$ the group of integers modulo $k...
متن کاملHamilton decompositions of complete 3-uniform hypergraphs
A k−uniform hypergraphH is a pair (V, ε), where V = {v1, v2, . . . , vn} is a set of n vertices and ε is a family of k-subset of V called hyperedges. A cycle of length l of H is a sequence of the form (v1, e1, v2, e2, . . . , vl, el, v1), where v1, v2, . . . , vl are distinct vertices, and e1, e2, . . . , el are k-edges of H and vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where addition on the subscripts is modu...
متن کاملGraceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 175 شماره
صفحات -
تاریخ انتشار 1997